DIFFUSION OF PARTICLES IN A HOMOGENEOUS
PSEUDOFLUIDIZED BED

Yu. A. Buevich and O. V. Chubanov UDC 532.72+66.096.5

The coefficients of longitudinal and transverse diffusion of the particles in a pseudofluidized
bed are calculated for an arbitrary value of the Reynolds number characterizing the flow of
the pseudofluidizing medium around the particles. The theory is compared with experiment.

The diffusion of fine suspended particles under homogeneous pseudofluidized conditions was consid-
ered in [1, 2] for a particle Reynolds number of R <1. However, in the majority of cases, the pseudofluid-
ized beds encountered in actual practice (including the homogeneous variety) are characterized by values
of R equal to several tens or even hundreds. In these cases the interaction of the pseudofluidizing medium
with the particles is nonlinear, not only with respect to the concentration of the bed, but also with respect
to the relative velocity of the suspended flow. In this paper we shall generalize the results of [1, 2] to
pseudofluidized beds of comparatively coarse particles, for which R is high. The bed is assumed homoge-
neous in the gense that no "bubbles® filled solely with the pseudofluidizing medium or aggregates con-
sisting of a large number of particles are formed in it. The particles in such a bed may be approximately
considered as statistically independent.

We shall use a coordinate system in which the particles are, on average, at rest, and shall direct
the x; axis along the average relative velocity of the suspended flow u. We shall regard this velocity and
also the average volumetric concentration of the particles in the bed p as independent of coordinates and
time. In this coordinate system the tensor representing the diffusion of the suspended particles due to
their random psuedoturbulent pulsations is diagonal, and its eigenvalues may be expressed in the form [1]

Dy = 5-{ %0101 (0, K dk (1)
where ‘I'wi,wi (w, k) is the diagonal component of the tensor representing the spectral density of the ran-
dom velocity of the particles w'; w and k are the frequency and wave vector of the pulsations. This guan-
fity is in the usual way expressed in terms of the spectral gage dZ., of the process w!, which enfers into
its representation in the form of a stochastic Fourier —Stiltes integral. The equations for dZ., and also
for the spectral gages dZy, dZp, dZ, representing the pulsations of the velocity v' and the pressure p' of
the liquid in the gaps between the particles and the pulsations of concentration p’', are obtained from the
stochastic equations relating to the pulsations in question. In the case under consideration these equations
differ from those used in [1, 2] solely in that the expression for the spectral gage dZF of the pulsation in
the force of interaction between the particles and the liquid F' is altered.

As in [1, 2], we use the results of Ergun [3] for the steady-state force acting on the particles in unit
volume of the unperturbed bed; thus we have
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where dg, iy are the density and viscosity of the liquid, ¢ is the radius of the particles. The expression
for dZy corresponding to (2) takes the form
dZp = dyp [(BIK + Bzu) az, + B, (“odZu) u-+ B, K’“dzp] —_ ikpdzp (3)

dK

dz, =4z, — dZ,, u0=_‘;-, K=

[The components of dZf due to different transient effects may here be ignored, since in order to deter-
mine Dj according to (1) it is sufficient to consider the equations for zero frequency w=0 only.] If 8,=0,
Egs. (2) and (3) transform into those used in [2] for calculating the diffusion coefficients of small particles
R<1).

The equations for the speciral gages at w=0 are written in the form {1, 2}
ukdZ, = (1 — p)kdZ,, dZrp=0
idy (1 —1p) (uk)dZ, =!— ikdZ , — p,S [A*dZ, — Yk (kdZ,)] (4)

Here S=8S(p) is a function allowing for the deviation of the effective viscosity of the liquid filtering
through the granular deposit from py. (This function was also introduced in [1].)
From Egs. (3) and (4) we derive an expression for dZy
dz ik, .
U2y = bty (Pl i i (K o By (4 8) -+ oS 14 — p) ] | (5)

From this we obtain the representations for the diagonal components of the tensor representing the
spectral density of the random vector w', valid for w= 0,

s r 01) = A (4 B3RP AIME QMg B0 B S a )] o (A Y, 08
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Here we have introduced the average porosity of the bed e, the filtration velocity (volumetric rate of
flow) of the liquid @, and the Reynolds number R.

The function S(p) for large R is unknown; however, as indicated in [1], this quantity has very little
effect on the diffusion coefficients. Neglecting this function and also the relatlvely small terms in the
brackets of (6), we obtain the approximate equation

3.5 R dan R 3.5 R
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For the spectral density of the quantity p' we use the expression derived in [4]. Then

CDp'p (k)

‘Fp,p (01 k) = TThDkk 0, P (k) = Y(‘I‘O - k) (8)
3 p 9np 1
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where Y(x) is a Heaviside function and p, is the concentration of the bed of particles in the close-packed
state.

Proceeding with the calculation, we obtain the following equations from (1), (7), and (8):

2D 7 Q2

DyDy = —5— (%o + 20Ty + Jy) (9)
Dp =L — T, Ja= 572%— Dy=D,
Here we have introduced the dimensionless parameters
*= ‘%s—K(i +%%)_1: p+é.233H = (2" (10)

From Egs. (9) we obtain a transcendental equation for y and expressions for Dy, Dy, and Dy in terms
of the single positive root of this equation:

272 (@ 4 20Ty + Jy) = (1L + 1) (o — Jy)

D; = DfaQ (=1,2.3), D= Do — NpDy® (11)
/ /z 1 2 s
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For R =0 these equations transform into those considered in [1, 2].

We note that Egs. (11) describe the diffusion of particles not only in a psuedofluidized bed but also
quite generally in flows of suspensions containing both fine and coarse particles, provided that the space
and time scales of the average flow are much greater than the corresponding scales of the pseudoturbulent
pulsations.

The solution of the first equation in (11) as a function of the parameter a from (10) is presented in
Fig. 1. Figures 2 and 3 give the dependences of Npy and D1° on p for p, =0.60 and different R values.
(Curves 1-9 in Figs. 2 and 3 are plotted for values of R equal to , 200, 100, 80, 60, 40, 20, 10 and 0 re-
spectively.)

We see that the pseudoturbulent diffusion of the particles for small R is sharply anisotropic (Np
small), as already mentioned in [1]. However, Np increases rapidly with increasing R; thus for R =200
and R— « it is practically independent of p and equals 0.226 and 0.420, respectively. Thus in a homoge-
neous pseudofluidized bed of fairly coarse particles the longitudinal diffusion is only 2.5-5 times more in-
tensive than the transverse. With increasing R in the range (0-20) the maximum of the D,;°=D,’(p) rela-
tionship moves rapidly in the large p direction; if R350 the maximum is reached for p~ 0.5. (We remem-~
ber that in the calculations we used p,=0.60; for other e, values the position of the maximum may of course
change.)
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Suppose that, at the instant at which the bed passes into the pseudofluidized state, the bed is char-
acterized by a value of R=R,. As the rate of flow Q increases, the concentration p diminishes monotonic-
ally, while the parameter R increases linearly. Hence points on different curves in Figs. 2 and 3 will
represent different states of a bed composed of the same particles, pseudofluidized by the same liquid. It
is accordingly of interest to plot the Np (p), D1° (p) relationships not only for fixed R, but also for different
specific beds.

The literature contains a large number of indirect conclusions regarding the diffusion of particles
[1], and the theory which has so far been developed is in general accord with these conclusions. However,
there have been very few systematic and reasonably exhaustive investigations into pseudoturbulent diffu-
sion which might provide a quantitative proof of the theory. We shall shortly consider the experiments of
Carlos and Richardson [5], who determined, in particular, the coefficients of longitudinal diffusion of par-
ticles in a homogeneous bed of glass spheres ~0.9 cm in diameter, pseudofluidized by dimethyl phthalate
(viscosity 0.1 P).

Carlos and Richardson [5] studied the dynamics of the spreading of a thin horizontal layer of tracer
spheres introduced into a stationary packing, which was then pseudofluidized. The coefficient D; was de-
termined by comparing the measured concentration profiles of the tracer spheres at different moments of
time with the solutions of the Fick equation corresponding to different D;. Two serious objections may be
advanced against this method. Firstly, for fairly short times the diffusion is described, not by the Fick
equation, but by a more complex equation of the hyperbolic type [4]. Secondly (and this is particularly im-
portant), under the experimental conditions of [5] there was an intensive circulation of the suspended ma-
terial in the bed, so that the spreading of the tracer particles was due not so much to diffusion itself as to
the convective transfer of the particles. (For comparison, we may indicate that the mean velocity of the
rising motion of the particles in the central part of the bed W; equaled 1-4 cm/sec, while the filtration ve-
locity Q,, at the onset of pseudofluidization was only 4.8 cm/sec.)

The existence of a rising flow of particles in the center of the bed and a descending flow at the walls
under conditions of pseudofluidization similar to those employed in {5] may easily be seen from the photo-
graphs of the spreading of tracer particles in a bed presented in [6]. The important role of the convective
transfer of the particles by the secondary circulatory flows is also emphasized in [7]. It follows that the
values of Dy obtained in [5] by the method indicated are much too high and should not be used to character-
ize true particle diffusion.

In addition to this, Carlos and Richardson [5] determined the component {(Ax,)?) of the mean square
vertical displacement of the particles in a time At due to the pulsations of the particles. As we should ex-
pect, this quantity was proportional to At, thus enabling the true diffusion coefficient D, to be determined
from the Einstein formula

Azy)?y = 2D, At (12)

If the trajectory of a uniquely distinguished particle is used in the averaging, this formula is only
valid when At greatly exceeds the time scale of the pulsations. If the averaging is carried out over many
particles (i.e., effectively over the whole aggregate), as in [5], Eq. (12) is valid for any At. The values of
D; determined from (12) in the experiments of [5] are shown by the light circles in Fig. 4.

The characteristic scale AT of the time of measurement in [5] was 10 sec. The convective displace~
ment of a particle in this time Xo~ W,AT ~ 10-40 cm, while the corresponding mean square displacement
due to diffusion Xg~ v2D;AT ~ 1-5 cm, considerably smaller thanX.. This estimate clearly illustrates the
inadequacy of the first method of determining D, in [5].

The close-packed state of the bed in the experiments of [5] corresponded to a simple cubic packing,
so that p, =0.524. (This value may easily be obtained by converting the values of Q and p in [5] to the ini-
tial pseudofluidized state, when Q=Q,.) The Reynolds number varied from 50 to 160 for a Q/Q, variation
from 1 to ~3.1. The theoretical relationship for D, calculated from (11) for the values of p_ and R indi-
cated is also shown in Fig. 4. Considering the complication of the theory itself and the many difficulties
which arise in setting up fine experiments with a pseudofluidized bed, and especially in the interpretation
of these, the agreement between the theoretical and experimental data may be regarded as entirely satis-
factory. We note that the general character of the curve in Fig. 4 is also supported by the data presented
in [6]. Certain values of Dy were also obtained in [7], using a model ™wo-dimensional® bed of hollow
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spheres 3.5 cm in diameter, pseudofluidized by air, which corresponded to extremely high values of R.
Unfortunately not all the data required for a rigorous estimate of the results were presented in [7}, par-
ticularly those needed for comparison with theory. However, it is clear that the curve representing the
dependence of D,y on Q/Q should in this case pass considerably higher than the curve in Fig. 4. One of
the experimental points of [7] is shown as a black circle in Fig. 4 by way of illustration.

Further comparison of theory with experiment and any possible refinement of the theory are at pres-

ent impeded by the lack of other reasonably reliable experimental data regarding the diffusion of particles
in dispersed systems.
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