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The coeff icients  of longitudinal and t r a n s v e r s e  diffusion of the pa r t i c l e s  in a pseudoiluidized 
bed a r e  calcula ted for  an a r b i t r a r y  value of the Reynolds number  cha rac te r i z ing  the flow of 
the pseudofluidizing medium around the pa r t i c l e s .  The theory  is  compa red  with exper iment .  

The diffusion of fine suspended pa r t i c l e s  under homogeneous pseudofiuidized conditions was consid-  
e red  in [1, 2] for  a pa r t i c le  Reynolds number  of R < 1. However,  in the ma jo r i t y  of cases ,  the pseudofluid-  
ized beds encountered  in actual  p rac t i ce  (including the homogeneous var ie ty)  a r e  c h a r a c t e r i z e d  by values  
of R equal to s eve ra l  tens or  even hundreds.  In these  ca se s  the in teract ion of the pseudofluidizing medium 
with the pa r t i c l e s  is  nonl inear ,  not only with r e spec t  to the concentrat ion of the bed, but also with r e spec t  
to the re la t ive  ve loc i ty  of the suspended flow. In this pape r  we shall  genera l ize  the resu l t s  of [1, 2] to 
pseudofluidized beds of compara t i ve ly  coa r se  pa r t i c l e s ,  for  which R is  high. The bed is  a s sumed  homoge-  
neous in the sense  that  no "bubbles" fi l led sole ly  with the pseudofluidizing medium or  aggrega tes  con-  
s is t ing of a l a rge  number  of pa r t i c l e s  a r e  fo rmed  in it. The pa r t i c l e s  in such a bed may  be approx imate ly  
cons idered  as  s t a t i s t i ca l ly  independent. 

We shall  use a coordinate  s y s t e m  in which the pa r t i c l e s  a re ,  on average ,  at  r e s t ,  and shall  d i r ec t  
the x 1 axis along the ave rage  re la t ive  veloci ty  of the suspended flow u. We shall  r ega rd  this ve loci ty  and 
also the ave rage  vo lumet r ic  concentrat ion of the pa r t i c l e s  in the bed p as independent of coordinates  and 
t ime.  In this coordinate  s y s t e m  the t enso r  r ep resen t ing  the diffusion of the suspended pa r t i c l e s  due to 
the i r  random psuedoturbulent  pulsat ions is  diagonal, and i ts  e igenvalues may  be e x p r e s s e d  in the fo rm [1] 

y~ 
I tF~'~i (0' k) dk (1) D~ = -~- 

where ~wi ,wi  (w, k) is  the diagonal component  of the t ensor  r ep re sen t ing  the spec t ra l  densi ty  of the r a n -  
dom veloci ty  of the pa r t i c l e s  w' ;  o~ and k a re  the f requency and wave vec to r  of the pulsat ions.  This quan- 
t i ty  is  in the usual way e x p r e s s e d  in t e r m s  of the spec t r a l  gage dZ w of the p r o c e s s  w' ,  which en te r s  into 
i t s  r ep resen ta t ion  in the fo rm of a s tochast ic  F o u r i e r - S t i l t e s  in tegral .  The equations for  dZw, and also 
for  the spec t r a l  gages  dZv, dZp, dZp rep resen t ing  the pulsat ions of the veloci ty  v '  and the p r e s s u r e  p '  of 
the liquid in the gaps between the pa r t i c l e s  and the pulsat ions of concentrat ion p ' ,  a re  obtained f rom the 
s tochast ic  equations re la t ing  to the pulsat ions in question. In the case  under considera t ion these  equations 
differ  f rom those used in [1, 2] solely in that the express ion  for  the spec t r a l  gage dZ F of the pulsation in 
the force  of in terac t ion  bet~veen the pa r t i c l e s  and the liquid F '  i s  a l tered.  

As in [1, 2], we use the resu l t s  of Ergun [3] for  the s t eady-s t a t e  force  acting on the pa r t i c l e s  in unit 
volume of the unper turbed  bed; thus we have 

F = dop@lK~ + ~K2u) u (v >~0.2 - 0.3) 

~I= 75 ~o 1 .75  l p 

K a = i ,  v ~  = do 
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where do, ~0 are the density and viscosity of the liquid, a is the radius of the particles. The expression 
for dZF corresponding to (2) takes the form 

dZF = dop [(~IK + ~2u) dZu + ~ (uodZu) u + [31 K'udZ~] - -  tkpdZ, (3) 

u K" dK dZ,, = ~Zv ~ dZw, Uo -- "-U ' = do' 

[The componen t s  of  dZ F due to  d i f fe ren t  t r a n s i e n t  e f fec t s  m a y  h e r e  be ignored ,  s ince  in o r d e r  to d e t e r -  
mine  Di a c c o r d i n g  to (1) i t  is  suff ic ient  to c o n s i d e r  the equat ions  for  z e r o  f r equency  w =  0 only.] I f  fi2=O, 

Eqs.  (2) and (3) t r a n s f o r m  into those  used  in [2] fo r  ca lcu la t ing  the diffusion coef f ic ien t s  of  sma l l  p a r t i c l e s  
(R < 1). 

The equa t ions  fo r  the s p e c t r a l  gages  at  w = 0 a r e  wr i t t en  in the f o r m  [1, 2] 

ukdZp ~ (l - -  9) kdZv, dZF = 0 

id0 (l --[9) (uk) dZ v =~--  ikdZ~, - -  ~o S [k"dZv - -  l/ak (kdZv)] (4) 

Hero  S=S(p)  is  a function a l lowing for  the devia t ion of  the ef fec t ive  v i s c o s i t y  of the l iquid f i l t e r ing  
th rough  the g r a n u l a r  deposi t  from/~0" (This  function was  a l so  i n t roduced  in [1].) 

F r o m  Eqs .  (3) and (4) we de r ive  an e x p r e s s i o n  for  dZ w 

dZwi= ~lK-.-~-[~2u(t+51i ) ~iK 'u jH i - - p  k 2 [ ~ l K ' + ~ u ( l  + S l J ) +  4/av~ + g ( i ~ p ) u k l ]  (5) 

F r o m  this  we obtain t h e  r e p r e s e n t a t i o n s  fo r  the d iagonal  componen t s  of the t e n s o r  r e p r e s e n t i n g  the 
s p e c t r a l  dens i ty  of  the  r a n d o m  v e c t o r  w T, va l id  fo r  w = 0, 

~IPwl, wl(0, k ) =  I -~- 150 p ) ([ up H - ~  x I -~T0-- ~ - ~  225 p k' p 
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t 1.75 R~-g t.75 R 8 eS ,  ~,2~ 2 1 akleRl2 ] kl~l~j 2 
Vw:,wi(0'k)=-'-~'( ~ +  i50 p / [ ( t + - - ~ - - ~ + - ~ - ~ - - ~ - - ( a x ) ]  + ( 7 5  p / ]  e "-~-~-k~ v ' ' o (0 'k )  ( / = 2 , 3 ) ( 6 )  

s = t ~ p, Q = eu, R = 2aQvo -'1 

Here  we have int roduced the ave rage  poros i ty  of the bed r the f i l t ra t ion veloci ty  (volumetr ic  ra te  of 
flow) of the liquid Q, and the Reynolds number  R. 

The function S (p) fo r  l a rge  R is  unknown; however,  as  indicated in [1], this quantity has v e r y  l i t t le  
effect  on the diffusion coeff ic ients .  Neglecting this function and a lso  the re la t ive ly  smal l  t e r m s  in the 
brackets  of (6), we obtain the approx imate  equation 

~ " ~ l ( 0 ' k ) = i (  1 '-~-1-~--5-]3"5 R~-z[dlnKk d~ +~-~tkl~' + t50 3.5 -~;/B~]2• 

• Q ~ , o ( 0 ,  k)' ~F~,w~(0, k ) ~  t~- k~ Q~tF~,~ (0' k) (/=2,3) (7) 

For  the spec t r a l  densi ty  of the quantity p '  we use the express ion  der ived in [4]. Then 

�9 ~ (0, k) = r (k_____~) ff4~ (k) =- @ Y (k o - -  k) 
' ~ D k k  ' ' (8 )  

3 2 P 9ap  1 

where Y(x) i s  a Heavis ide  function and p, is  the concentrat ion of the bed of pa r t i c l e s  in the c lose -packed  
state.  

P roceed ing  with the calculat ion,  we obtain the following equations f rom (1), (7), and (8): 

D1D2 = 2~m ~g~ (cteJo + 2aJ~ + J4) (9) 
k0 ~ 8 4 

i 
~cp ~;2Q~ ('f2 - -  Jr),  I n  ~ tndt D22 = ko ~ -  8" = 3  t 2 + T "z ' D s  ~-- D e  

o 

Here  we have int roduced the d imens ion less  p a r a m e t e r s  

3 . 5  B / -1 t n~  ~t/~ 
~ i .K  (t + 150 -5-/ = ~ ' = (  D~-----7:-57/ (i0) ct = e ~  " ? + 0 . 2 3 3 B  ' 

F r o m  Eqs. (9) we obtain a t ranscendenta l  equation for  T and express ions  for  D1, D2, and D 3 in t e r m s  
of the single posi t ive  root  of this equation: 

27 ~ (~2J0 § 2x~r2 + J4) = (i + T 2) (J2 --  Y4) 

Dj ~ Dj~ ( / =  1, 2, 3), D2 ~ ~ D3 ~ = NDDi ~ 

Di~ = 0"358 (-Y=~T- -- p,] 

(ii) 

For  R =0 these  equations t r a n s f o r m  into those cons idered  in [1, 2]. 

We note that  Eqs. i l l )  desc r ibe  the diffusion of pa r t i c l e s  not only in a psuedofluidized bed but a lso  
quite genera l ly  in flows of suspensions  containing both fine and coa r se  pa r t i c l e s ,  provided that the space 
and t ime  sca les  of the ave rage  flow a re  much g r e a t e r  than the cor responding  sca les  of the pseudoturbulent  
pulsat ions.  

The solution of the f i r s t  equation in (11) as a function of the p a r a m e t e r  c~ f r o m  (10) is  p resen ted  in 
Fig. 1. F igures  2 and 3 give the dependences of N D and D1 ~ on p for  p, = 0.60 and different  R values.  
(Curves 1-9 in Figs.  2 and 3 a r e  plotted for  values  of R equal to % 200, 100, 80, 60, 40, 20, 10 and 0 r e -  
spectively.)  

We see  that  the pseudoturbulent  diffusion of the pa r t i c l e s  for  smal l  R is  sharp ly  anisot ropic  (ND 
small) ,  as  a l ready  mentioned in [1]. However ,  N D i n c r e a s e s  rapidly  with inc reas ing  R; thus for  R =200 
and R--* r162 i t  i s  p rac t i ca l ly  independent of p and equals 0.226 and 0.420, respec t ive ly .  Thus in a homoge-  
neous pseudofluidized bed of f a i r ly  coa r s e  pa r t i c l e s  the longitudinal diffusion is  only 2.5-5 t imes  m o r e  in-  
tensive  than the t r a n s v e r s e .  With inc reas ing  R in the range (0-20) the m a x i m u m  of the D1 ~ =D1 ~ (p) r e l a -  
t ionship moves  rapidly  in the la rge  p direct ion;  i f  R ~ 50 the m a x i m u m  is  reached  for  p ~ 0.5. (We r e m e m -  
ber  that  in the calculat ions we used p ,=0.60;  for  o ther  p, values  the pos igon  of the m a x i m u m  may  of course  
change.) 
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Suppose that,  at  the instant  at which the bed p a s s e s  into the pseudofluidized state,  the bed is  c h a r -  
ac t e r i zed  by a value of R = R , .  As the ra te  of flow Q i n c r e a s e s ,  the concentra t ion p d iminishes  monotonic-  
ally, while the p a r a m e t e r  R i n c r e a s e s  l inear ly .  Hence points on dif ferent  curves  in Figs.  2 and 3 will 
r e p r e s e n t  different  s ta tes  of a bed composed  of the s ame  pa r t i c l e s ,  pseudofluidized by the s ame  liquid. I t  
is  accordingly  of i n t e r e s t  to plot the N D (p), D1 ~ (p) re la t ionships  not only for fixed R, but also for  different  
specif ic  beds. 

The l i t e r a tu re  contains a l a rge  n u m b e r  of ind i rec t  conclusions r ega rd ing  the diffusion of pa r t i c l e s  
[1], and the theory  which has so fa r  been developed is in genera l  a cco rd  with these  conclusions.  However ,  
there  have been v e r y  few sys t ema t i c  and reasonab ly  exhaust ive inves t igat ions  into pseudoturbulent  diffu- 
sion which might  p rov ide  a quanti tat ive p roof  of the theory.  We shall  shor t ly  cons ider  the expe r imen t s  of 
Car los  and Richardson  [5], who determined,  in pa r t i cu la r ,  the coeff icients  of longitudinal diffusion of p a r -  
t ic les  in a homogeneous bed of g lass  sphe res  ~ 0.9 cm in d iamete r ,  pseudofluidized by dimethyl  phthalate 
(viscosi ty  0.1 P). 

Car los  and Richardson [5] studied the dynamics  of the spread ing  of a thin horizontal  l aye r  of t r a c e r  
sphe res  in t roduced into a s ta t ionary  packing, which was then pseudofluidized.  The coefficient  D 1 was de-  
t e rmined  by compar ing  the m e a s u r e d  concentra t ion p rof i l es  of the t r a c e r  sphe res  at dif ferent  momen t s  of 
t ime  with the solutions of the Fick equation cor responding  to different  D 1. Two se r ious  object ions may  be 
advanced against  this  method.  F i r s t ly ,  for  fa i r ly  shor t  t imes  the diffusion is  descr ibed ,  not by the Fick 
equation, but by a m o r e  complex equation of the hyperbol ic  type [4]. Secondly (and this is  pa r t i cu l a r ly  i m -  
portant) ,  under  the exper imenta l  conditions of [5] the re  was an intensive c i rcula t ion of the suspended m a -  
t e r i a l  in the bed, so that the spread ing  of the t r a c e r  pa r t i c l e s  was due not so much to diffusion i t se l f  as to 
the convect ive  t r a n s f e r  of the pa r t i c l e s .  (For  compar i son ,  we m a y  indicate that  the mean  veloci ty  of the 
r i s ing  motion of the pa r t i c l e s  in the cen t ra l  pa r t  of the bed W 1 equaled 1-4 c m / s e c ,  while the f i l t ra t ion v e -  
locity Q ,  at the onset of pseudofluidization was only 4.8 cm/ sec . )  

The ex is tence  of a r i s ing  flow of pa r t i c l e s  in the center  of the bed and a descending flow at the walls  
under  conditions of pseudofluidization s i m i l a r  to those employed in [5] m a y  eas i ly  be seen f r o m  the photo-  
graphs  of the sp read ing  of t r a c e r  pa r t i c l e s  in a bed p re sen ted  in [6]. The impor tan t  ro le  of the convect ive 
t r a n s f e r  of the p a r t i c l e s  by the secondary  c i r cu l a to ry  flows is  a lso  emphas ized  in [7]. I t  follows that  the 
values  of D 1 obtained in [5] by the method indicated a r e  much too high and should not be used  to c h a r a c t e r -  
ize t rue  pa r t i c l e  diffusion. 

In addition to this,  Car los  and Richardson [5] de te rmined  the component  <(Axl)2> of the mean square  
ver t i ca l  d i sp lacement  of the pa r t i c l e s  in a t ime  At due to the pulsat ions of the pa r t i c l e s .  As we should ex-  
pect,  this  qtmntity was propor t iona l  to At, thus enabling the t rue  diffusion coeff icient  D 1 to be de te rmined  
f rom the Einstein fo rmula  

( ( h x l ) ~  = 2DiAt (127 

I f  the t r a j e c t o r y  of a uniquely dis t inguished pa r t i c l e  is  used in the averaging,  this fo rmula  is  only 
valid when At g rea t ly  exceeds  the t ime  sca le  of the pulsat ions .  If  the averag ing  is  c a r r i e d  out over  many  
pa r t i c l e s  (i.e., e f fec t ively  over  the whole aggregate) ,  as  in [5], Eq. (127 is  valid for  any At. The values  of 
D 1 de te rmined  f rom (127 in the expe r imen t s  of [5] a re  shown by the light c i r c l e s  in Fig. 4. 

The c h a r a c t e r i s t i c  scale  AT of the t ime  of m e a s u r e m e n t  in [5] was 10 sec.  The convect ive d i sp lace -  
ment  of a pa r t i c l e  in this t ime  X c ~ WIAT ,~ 10-40 cm,  while the cor responding  mean square  d i sp lacement  
due to diffusion Xd~- 2~f2-D1AT ~ 1-5 cm,  cons iderab ly  s m a l l e r  thanX c. This  e s t ima te  c l e a r l y  i l lu s t r a t e s  the 
inadequacy of the f i r s t  method of de te rmin ing  D 1 in [5]. 

The c lo se -packed  s ta te  of the bed in the expe r imen t s  of [5] co r responded  to a s imple  cubic packing, 
so that p, = 0.524. (This value m a y  eas i ly  be obtained by conver t ing the values  of Q and p in [5] to the in i -  
t ial  pseudofluidized s tate ,  when Q = Q . . )  The Reynolds number  va r i ed  f rom 50 to 160 for  a Q / Q ,  var ia t ion  
f rom 1 to ~3 .1 .  The theore t ica l  re la t ionship  for  D 1 calcula ted f rom (11) for  the values  of p, and R indi-  
cated i s  a lso  shown in Fig. 4. Consider ing the complicat ion of the theory  i t se l f  and the many  difficult ies 
which a r i s e  in set t ing up fine expe r imen t s  with a pseudofluidized bed, and espec ia l ly  in the in te rpre ta t ion  
of these ,  the a g r e e m e n t  between the theore t ica l  and exper imen ta l  data may  be r ega rded  as  en t i re ly  s a t i s -  
fac tory .  We note that the genera l  c h a r a c t e r  of the curve  in Fig. 4 is  a lso  suppor ted  by the data p resen ted  
in [6]. Cer ta in  values  of D 1 were  a lso  obtained in [7], using a model  " two-dimensional  ~ bed of hollow 
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spheres  3.5 cm in d iamete r ,  pseudofluidized by a i r ,  which cor responded  to e x t r e m e l y  high values  of R. 
Unfortunately not al l  the data r equ i red  for  a r igorous  es t ima te  of the r e su l t s  were  p re sen t ed  in [7], p a r -  
t icu lar ly  those needed for  compar i son  with theory.  However,  i t  is  c l ea r  that  the curve  r ep resen t ing  the 
dependence of D 1 on Q / Q ,  should in this case  pass  cons iderably  higher than the curve  in Fig. 4. One of 
the exper imenta l  points of [7] i s  shown as a black c i r c l e  in Fig. 4 by way of i l lus t ra t ion.  

Fu r the r  compar i son  of theory  with exper imen t  and any poss ib le  re f inement  of the theory  a re  at p r e s -  
ent impeded by the lack of other r easonab ly  re l iable  exper imenta l  data regard ing  the diffusion of pa r t i c l e s  
in d i spe r sed  s y s t e m s .  
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